1 Biophysik

1.1 Zellen

- Zelle: kleinste lebensfähige Einheit: Nahrungsaufnahme, Teilung, Bildung größerer Organismen nach Zusammenschluss mit anderen Zellen
- <u>Differenzierung</u>: spezielle und unterschiedliche Entwicklung von verschiedenen Zellen bei Vermehrung
- Anpassung: Spezielle Entwicklung abhängig von der Umgebung

Eukaryotische Zellen

- Abgeschlossener Zellkern (Nukleus)
- besitzen viele intrazelluläre, umhüllte Komponenten (Organellen)
- komplett umhüllende Zellmembran

Zellbestandteile

- <u>Membran</u>: Lipid-Protein Doppelschicht (5nm dick)
 Schutz, Informationsaustausch (Poren, Kanäle, Rezeptorproteine)
- <u>Cytoskelett</u>: filamentöses Protein-Netzwerk (Aktin, Mikrotubuli)
 ⇒ Zell-Stabilität/Festigkeit, Zellform, Zell-Migration
- <u>Zellmoleküle</u>: Zucker, Aminosäuren, Lipide, stickstoffhaltige Basen, Phosphate, Proteine
 - \Rightarrow Aufbau der Vielfalt an Makromolekülen
- Zellkern: Informationszentrum, lagert gentische Information
 - Nukleolus: Ribosome, rRNA
 - Kernmembran: Transport von DNA, RNA, Ribosomen
 - Chromosomen: Speicherung der Erbinformationen
- <u>Mitochondrien</u>: Zellkraftwerk: Bildung von ATP ca. 1000 pro Zelle, 1-2 μ m groß
- Endoplasmatisches Retikulum: weit verzweigtes Membrannetzwerk Synthese von Proteinen/Molekülen
 - \Rightarrow raues ER: Angelagerte Ribosome (PBS)
 - \Rightarrow glattes ER: Lipidsynthese, schließt direkt an Zellkern an
- Golgi-Apparat: stapelförmig kollabierte Membran gegen Cytosol abgeschlossene Räume
 Zwischenstation für im ER synthetisierte Proteine/Moleküle
 Transport von Material über Vesikel
- <u>Lysosom</u>: Vesikelförmig mit Membran Abbau von Molekülen/Substanzen: Zellmaterial, Fremdkörper, Bakterien, sauer pH-Wert
- Peroxisomen: kugelförmig, Reaktionsbehälter (giftige Reaktionen)
- Zentriolen: Zylinderförmig, Transport-, Stützfunktion, Zellteilung

Tierische vs. Pflanzliche Zelle

Kriterium	Tierzelle	Pflanzenzelle
Hülle	Zellmembran	Zellwand, Zellmembran
Stützfunktion	Cytoskelett	Zellwand
Kohlenhydratsp.	Glucose / Glykogen	Stärke
Entgiftung	Lysosome, Peroxisome	Vakuolen, Glyoxisome
Plastide	nicht vorhanden	Chloroplasten, Leuko-
		plasten, Amyoplasten
Photosynthese	nein	ja

- ATP Hydrolyse: ATP + $H_2O \rightarrow ADP + Phosphat + Energie$

- Stärkespaltung: $C_6H_5O_{12}$ + Enzyme \rightarrow Disaccharide + Energie

Prokaryotische Zellen

- keinen abgeschossenen Kern/Nukleus
- wenig intrazelluläre Komponenten, alle ohne Membran
- Zellwand zur Stabilität, zusätzlich zur inneren Plasmamembran
- <u>Grampositiv</u>: Peptidglykanschicht (Hetero-Polymer aus Zuckern und Aminosäuren) Beispiel: Streptokokken (Wundinfektion, Scharlach) Identifikation: Blaue Gramfärbung der Peptidoglykanschicht
- <u>Gramnegativ</u>: Lipid-Doppelschicht + Proteine + Peptidoglykane Beispiel: E.coli, Typhus-Salmonellen Identifikation: keine blaue Gramfärbung

1.2 Thermodynamik

Zustandsgrößen

- <u>extensive Zustandsvariable</u>: abhängig von der Stoffmenge: Wert ergibt sich als Summe ihrer Werte jedes Teilsystems: Volumen, Energie, Stoffmenge
- <u>intensive Zustandsvariable</u>: unabhängig von der Stoffmenge, nicht additiv, für jedes Untersystem gleich: Druck, Dichte, Temperatur
- keine Veränderung der Zustandsvariablen eines Systems: thermodynamisches Gleichgewicht oder stationärer Nichtgleichgewichtszustand
- Zustandsänderungen: Überführung von System in anderen Zustand durch Veränderung von Zustandsvariablen (Erwärmung, Ausdehnung)
- reversibel: infinitesimale Veränderungen, leicht umkehrbar
- irreversibel: natürliche, spontan ablaufende Veränderungen
- • Stoffmenge: $n_i = \frac{N_i}{N_A} \text{ [mol]} \quad N_A = 6,022 \cdot 10^23 \text{ mol}^{-1}$
- molare Masse: $M_i = \frac{m_i}{n_i}$ Stoffmengenanteil/Molenbruch: $x_i = \frac{n_i}{n_{\mathrm{tot}}}$
- molare Konzentration/Molarität: $c_i = \frac{n_i}{V} \left[\frac{\text{mol}}{\text{m}^3}\right]$
- absolute Temperatur: $T = \frac{T_0}{V_0} \cdot V(T)$ [K]
- Zustandsgleichung: $P \cdot V = n \cdot R \cdot T$ $R = 8,3145 \frac{\text{J}}{\text{mol K}}$
- Volumenausdehnungskoeffizienten: $\beta = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)$ i.A. $\beta > 0$
- isotherme Kompressibilität: $\kappa = -\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)$ i.A. $\kappa>0$

Boltzmann Verteilung

- Makrozustand: Gesamtzustand eines Vielteilchensystems durch mittlere Zustandsgrößen
- Mikrozustand: Mögliche Aufteilung der vielen Teilchen eines Systems unter Beibehaltung des Maktrozustands
- Boltzmann-Verteilungsprinzip: $N_i = N \frac{\exp(-\varepsilon_i/k_BT)}{Z}$ Energiezustand: ε_i Zustandssumme: $Z = \sum_i \exp(-\varepsilon_i/k_BT)$

Arbeit

- mechanisch: $dW_{\text{mech}} = Fdl$ elektrisch: $dW_{\text{elek}} = RI^2dt$
- Volumenausdehnung: $dW_{\text{exp}} = -Fdl = -P_{\text{ext}}dV$
- Volumenkompression: $dW_{\text{komp}} = -P_{\text{int}}dV \quad dV < 0$

Wärmekapazität und Enthalpie

- Wärmekapazität bei konstantem Volumen: $C_V = \frac{\mathrm{d}U}{\mathrm{d}T} \left[\frac{\mathrm{J}}{\mathrm{K}}\right]$
- spezifische Wärmekapazität: $\tilde{C}_V = \frac{C_V}{m}$
- Enthalpie: $H = U + P \cdot V$ [J] dH = dU + PdV + VdP
- Wärmekapazität bei konstantem Druck: $C_P = \frac{\mathrm{d}H}{\mathrm{d}T}$
- Reaktionsenthalpie: $\Delta_r H = \sum \bar{H}$ (Endprodukte) $-\sum \bar{H}$ (Ausgangsstoffe)
- Standardreaktionsenthalpie: $\Delta_r H^{\circ} = -2802 \frac{\text{kJ}}{\text{mol}}$
- exotherme Reaktion: $\Delta_r H^{\circ} < 0$ endotherme Reaktion: $\Delta_r H^{\circ} > 0$

Entropie

- Maß für die strukturelle Unordnung des betrachteten Systems
- $\bullet\,$ tendiert zu höhere Unordnung: $\Delta S>0$
- infinitesimale Zustandsänderungen: TdS = dU + PdV
- $\bullet\,$ reversible Zustandsänderungen: $\mathrm{d}S = \frac{\mathrm{d}Q}{T}$
- Standardreaktionsentropie: $\Delta_r S^{\circ} = 212 \frac{\text{J}}{\text{mol K}}$

Freie Enthalpie

- Gibbs-Funktion: $G = H T \cdot S$ [J] dG = dH - SdT - TdS
- Gibbs'sche Fundamentalgleichung: $\mathrm{d}G = -S\mathrm{d}T + V\mathrm{d}P + \sum_{k=1}^r \mu_k \mathrm{d}n_k$
- Freie Reaktionsenthalpie: $\Delta G = \Delta_r H T \Delta_r S$
- Freie Standardreaktionsenthalpie: $\Delta G^{\circ} = \Delta_r H^{\circ} T \Delta_r S^{\circ}$
- Enthalpiegetriebene Reaktion: bei niedrigen Temperaturen möglich: $\Delta_r H < 0, \Delta_r S < 0$
- Entropiegetriebene Reaktion: bei hohen Temperaturen möglich: $\Delta_r H > 0, \Delta_r S > 0$

Hauptsätze der Thermodynamik

- 0. Hauptsatz der Thermodynamik: Sind zwei Systeme I und II jeweils im thermischen Gleichgewicht mit einem dritten System III, so sind sie auch miteinander im thermischen Gleichgewicht.
- 1. Hauptsatz der Thermodynamik: Für geschlossene Systeme mit konstanten äußeren Zustandsvariablen existiert eine extensive Zustandsfunktion (innere Energie U), für die gilt: $\mathrm{d}U=\mathrm{d}W+\mathrm{d}Q$ Reversible Volumenarbeit: dU = dQ - PdVadiabatische Zustandsänderung: dQ = 0, dU = dW
- 2. Hauptsatz der Thermodynamik: Es ist unmöglich, eine Maschine zu konstruieren, die einem Wärmereservoir die Wärem ΔQ entnimmt und diese vollständig in Arbeit ΔW verwandelt. Ein Perpetuum mobile zweiter Art ist unmöglich.
- 3. Hauptsatz der Thermodynamik: Es ist nicht möglich ein System bis zum absoluten Nullpunkt abzukühlen.

Chemisches Potential

- Freie Enthalpie (auf ein Mol): $\mu = \frac{G}{n}$ $dG = \mu_1 dn_1 + \ldots + \mu_k dn_k$
- Gibbs-Duhem Gleichung: partielle Stoffmengen einer Mischung nicht unabhängig voneinander variierbar: $n_1 d\mu_1 + \ldots + n_k d\mu_k = 0$
- Ideales Gas: $\mu = \mu_0^* + R \cdot T \cdot \ln \frac{P}{P_0}$
- Ideal verdünnte Lösung: $c=\frac{n}{V}$ $\mu=\mu_0^*+RT\ln(RT)+RT\ln(c)$ $\Rightarrow \mu=\mu_0+RT\ln(c)$ $\mu_0=\mu_0^*+RT\ln(RT)$
- Verteilungsgleichgewicht: $\mu' = \mu'' \Rightarrow \frac{c'}{c''} = \exp\left(\frac{\mu'_0 \mu''_0}{RT}\right) := \gamma$
- - \Rightarrow Henry'sches Gesetz: $c = K \cdot P$ $K = \frac{1}{c_1 P'}$

Osmose

- Semipermeable Membran: Für eine Komponente (Wasser) durchlässig, für andere (gelöster Stoff) undurchlässig
- Osmotischer Druck: $\pi = P'' P'$
- Van't Hoff'sche Gleichung: $\pi = cRT$
- Wasserpotential: $\Psi = \frac{\mu_w \mu_w^0}{\bar{V}_w^0}$
- Für P=1bar gilt: $\Psi=-\pi$ Überdruck: $\Psi=-\pi+\Delta P$

1.3 Kräfte und Bindungen

Molekulare Elektronen-Orbitale

- Bindende σ Orbitale: bindendes Element, da Energielage im Molekül günstiger als im einzelnen Atom. Elektronendichte entlang der Verbindungslinie der Kerne endlich groß
- Antibindende σ^* Orbitale: nicht zur Bindung beitragend, da im Molekül energetisch ungünstiger. Elektronendichte entlang der Verbindungslinie der Kerne geht gegen null.

Kovalente Bindung

- Elektronenpaarbindung, homöopolare Bindung über Valenzelektronen der äußeren Hülle der Atome
- Einfachbindungen: H_2 mit σ_{1s} -Bindung
- Doppelbindungen: O₂ mit einer σ_{2p} und einer π_{2p} Bindung
- Bindendes π Orbital: Elektronendichte maximal in Ebene senkrecht zur Verbindungslinie der Kerne
- Koordinative Bindung: Elektronenpaare nur von einem der Bindungspartner: Elektronenmangel am Akzeptor und Elektronenüberschuss am Donor. Beispiel: Ammoniak $(NH_3) \rightarrow Amminboran (H_3N-BF_3)$
- Bindungsenergien (Einfachbindung): 3,6...5,0 eV
- Bindungsenergien (Doppelbindung): 5,0...8,0 eV

Ionische Bindung

- Heteropolare, elektrovalente Bindung zwischen positiv/negativ geladenen Partnern Elektrostatische Wechselwirkung stärker als unmittelbare Wechselwirkung der Elektronenhülle
- Beispiel: Ionisierung von Lithium: Li \rightarrow Li^+ + e^- \Rightarrow F + e^- \rightarrow F^-
- Elektronegativität e_N : Stärke Elektronen aufzunehmen. Art der Bindung bestimmbar durch Differenz der Elektronegativitäten
- Bindungsenergien: 8...40 eV

Starke Bindung (kovalent, ionisch)

- Abstoßungspotential (Born/Mayer): $E(r) = A \exp\left(\frac{2r_s r}{r_s}\right)$ $p \approx$ Atom-Radius, A, r_s Konstanten
- Kovalentes Anziehungspotential: $E(r) = -\frac{1}{4\pi\varepsilon_0}\frac{e^2}{r}\exp\left(\frac{-r}{\zeta}\right)$
- $\frac{\text{Morse Potential:}}{D_0\text{ Dissoziationsenergie,}} \frac{D_0 \cdot [1 \exp(-\alpha(r r_0))]^2}{D_0 \cdot Dissoziationsenergie,}$

Van-der-Waals Bindung

- Wechselwirkung von induzierten Dipolmomenten, Dispersionskräften und Dipolen
- unpolare Moleküle, im zeitlichen Mittel kein Dipolmoment
- fluktuierende Ladungen bilden Dipole ⇒ Induzieren Dipol im Nachbarmolekül ⇒ Wechselwirkungen und Kräfte
- Beispiele: Unpolare Stoffe in unpolaren Lösungsmittel, Polymere, Geckos
- <u>Lennard-Jones Potential</u>: $E(r) = \varepsilon \left[\left(\frac{r_0}{r} \right)^{12} 2 \cdot \left(\frac{r_0}{r} \right)^6 \right]$ Bindungsenergien: $\approx 0, 16$ eV

Wasserstoffbrückenbindungen

- Bindung zwischen zwei polaren Molekülgruppen, z.B. über Wasser-
 - Donator: elektronegatives Atom an Wasserstoff kovalent gebunden Akzeptor: elektronegatives Atom mit freien Elektronenpaaren
- Wasserstoffbrückenbindung: Wechselwirkung des freien Elektronenpaars mit H 1s1 Orbital
- Beispiele: Wasser, NH₃, Essigsäure, DNA
- Bindungsenergien $\approx 0.1 \text{ eV}$ Bindungslängen $\approx 0, 25 \dots 0, 35 \text{ nm}$

Molekülkonformere

- Verschiedene Strukturen aufgrund von Bindungseigenschaften
- Versch. Isomerzustände von Molekülen \rightarrow unterschiedliche Bindungen
- Beispiel: Polyisoprene (Polymer) cis-Polyisoprene: Naturkautschuk, sehr flexibel trans-Polyisoprene: Gutta-Percha (hartes Plastik)

1.4 Proteine

- Alleskönner, übernehmen viele Funktionen in und zwischen Zellen
- Aufbau: >1500 Moleküle
- Gewicht: $m \approx 10...50 \text{ kDa} (1 \text{ Da} = 1 \text{ u} = 1,66 \cdot 10^{-27} \text{ kg})$
- Biopolymere = "aus vielen gleichen Teilen aufgebaut"
- Bakterien: 3000 verschiedene Proteine
- Menschliche Zellen: $60.000 \dots 100.000$ verschiedene Proteine
- Funktionen: Bindung, Katalyse von Reaktionen, Umwandlung Lichtenergie in chem. Energie, Molekültransport, Signalübertragung

Aminosäuren

- Grundeinheiten der Proteine (15 bis >1000 pro Protein)
- 20 verschiedene natürliche Aminosäuren
- Grundaufbau: saure Gruppe (COOH, Carboxy) + basische Gruppe $(NH_2 \text{ oder } NH_3^+, Amino) + Seitenkette R (Zwitterion)$
- Carboxy- und Amino-Gruppe durch α -Kohlenstuff verbunden (C_{α})
- Rest: Seitenkette, varriert, bestimmt Eigenschaften
- Protein: Aminosäurenkette N-Terminus: Beginn, freie Amino-Gruppe C-Terminus: Ende, freie Carboxy-Gruppe
- $\bullet \ \ Einteilung: polar/unpolar, geladen/ungeladen, aromatisch/aliphatisch$

- <u>aromatisch</u>: Ringsystem + delokalisierte Elektronen (Doppelbindung), Beispiel: Benzol
- <u>aliphatisch</u>: kein Ringsystem oder Ringsystem + keine delokalisierten Elektronen, Beispiel: Methan, Cycloshexan
- polar: hydrophil, Wasser auf Proteinaußenseite
- hydrophop, kein Wasser auf Proteininnenseite
- 'Überführungsenergie' = Umgebungspräferenz
 Energie, die nötig ist, um Aminosäure von unpolar in polare Umgebung, negativ, falls spontan (polare Präferenz)
- \bullet <u>Glycin</u>: kleinste Seitenkette (H), geringer Raumbedarf \Rightarrow mehr Freiheit in Flexibilität bei späterem Protein
- Asparagin, Glutaminsäure: pH-Wert = 7,4: leichte Protonenaufnahme/abgabe, wichtige Rolle beim Protonentransfer
- <u>Cystein</u>: S-H-Gruppe, zwei Cysteine über kovalente Disulfidbrücke verbunden ⇒ Protein-Struktur Stabilisierung
- Prolin: Starre Ringverbindung, klare Strukturvorgabe im Polypeptid
- Häufigste Aminosäuren: Leucin, Alanin
- Seltenste Aminosäuren: Tryptophan, Cystein
- Essentielle Aminosäuren: Isoleucin, Leucin, Lysin, Methionin, Phenylalanin, Threonin, Tryptophan, Valin
- <u>Stereoisomere</u>: Raumisomere, gleiche Konstitution, nur in Anordnung der Atome und -gruppen unterschiedlich (z.B. Weinsäure)
- Enantiomere: wie Bild und Spiegelbild, durch Rotation nicht ineinander überführbar (Chiralität), drehen Polarisation des Lichts alle natürlichen Aminosäuren sind Enantiomere: Unterscheidung in D- und L-Form, natürlich kommen nur L-Isomere vor

Proteinbildung und PBS

- Kondensationsreaktion zwischen zwei Aminosäuren unter Wasserabspaltung führt zu einer Peptidbindung
- Energie durch Spaltung von GTP und ATP bereitgestellt
- <u>DNA</u>: speichert Informationen über Proteinaufbau in Basensequenz (Adenin, Guanin, Cytosin, Thymin)
- <u>Transkription</u>: Übertragung der Information auf komplementäre RNA Sequenzen (Adenin, Guanin, Cytosin, Uracil) durch RNA-Polymerase
- <u>Translation</u>: mRNA gelangt ins Cytosol, Übersetzung in Aminosäuresequenz des Proteins
 - 3 Basenpaare bilden Codon = spezifisch für eine Aminosäure Übersetzung mithilfe von Ribosomen am rauen ER
 - \rightarrow enzymatisch katalysierte Bildung der Peptidbindung: geringer Energieaufwand
- Spaltung der Peptidbindung durch Hydrolyse möglich, aber durch hohe Energiebarriere unwahrscheinlich ⇒ Protein-Abbau mit Kinasen

Struktur der Peptidbindung

- $\bullet\,$ C-N-Bindung: 0,13 nm (geringer als normal)
- C=O-Bindung: 0,125 nm (deutlich größer als normal)
- Grund: Mesomerie (Resonanzstruktur) der Peptidbindung: Bindungsverhältnisse nur durch Grenzformeln darstellbar, tatsächliche Elektronenverteilung zwischen den Grenzformeln
- $\bullet\,$ Grenzstruktur I: C-N axialsymm. $\sigma\textsc{-Bindung},$ freie Rotation
- Grenzstruktur II: C-N σ und π -Bindung, keine Roation, Dipol, planar
- \bullet Hybridstruktur ebenfalls planar, benachbarte Peptidbindungen gegeneinander verdrehbar, C_α mit Seitenkette R als Drehgelenk
- Dieder-Winkel: ϕ (N-C $_{\alpha}$ Bindung)
- Torsions-Winkel: ψ (C-C $_{\alpha}$ Bindung)

Struktur der Proteine

- <u>Primärstruktur</u>: Abfolge der Aminosäuren/Peptide vom N-Terminus zum C-Terminus
 - Weniger als 10 Aminosäuren \rightarrow Polypeptid
 - Oligopeptid: nur aus gleichen Aminosäuren aufgebaut: z.B. Polylysin
- <u>Sekundärstruktur</u>
 - -Übergeordnete Struktur aus Polypeptidkette durch schwache WW zwischen naheliegenden AS
 - <u>Schleifen</u>: lokale charakteristische Strukturelemente aus wenigen Peptiden
 - <u>Random-Coil</u>: Anhäufung von Schleifen
 - $\underline{\alpha\text{-Helix}}\text{:}$ ausgedehnte Struktur, Stabilisation: Wasserstoffbrücken
 - $\underline{\beta\text{-Faltblatt}}\textsc{:}$ Ziehharmonika
ähnlich geriffelt, Wasserstoffbrücken
- <u>Tertiärstruktur</u>: Vollständige 3D-Struktur einer gesamten Polypeptidkette, Aneinanderreihung von Sekundärstrukturen, minimierte freie Enthalpie/Entropie

- Quartärstruktur: Übergeorndeter funktioneller Komplex mehrer Tertiärstrukturen, oftmals mehrere Proteine zu großem Komplex
- involvierte Bindungen:
 - Kovalent: Disulfidbindungen zwischen Cysteinen
 - Ionenbindung: Salzbrücken: -NH₃⁺ . . . [−]OOC-
 - Wasserstoffbrücken: O-H, N-H (α -Helix, β -Faltblatt)
 - Hydrophobe Bindungen: Zusammenlagerung von Molekülgruppen
 + Ausschließung von Wasser, keine Hydrathülle, Van-der-Waals-Kräfte

Protonierung

- Protonierungs-/Ionisierungsreaktion: $OH + H_2O \rightleftharpoons O^- + H_3O^+$ (Deprotonierung von OH, Protonierung von H_2O)
- Definition: pK_a -Wert (Säurekonstante): $pK_a = -\log[K_a]$
- Analog: pH-Wert: pH = $-\log[H^+]$
- Bedeutung: Wie stark ist Protonenabgabe, d.h. wie sauer je saurer, desto höher [H⁺], desto höher K_a, desto kleiner pK_a-Wert
- kleiner pK_a-Wert: Stoff starke Säure (Protonendonator)
- großer pK_a-Wert: Stoff starke Base (Protonenakzeptor)
- Konzentrationen gleich: $[H^+] = [A^-] = [H-A] \Rightarrow pK_a = pH$
- Base-Titration: Maßanalyse-Verfahren, Bestimmung vom Säurgehalt Zugabe von Base (z.B. NaOH), erhöhe pH-Wert
 ⇒ Im Bereich des pK_a-Wertes: flache Kurve
 Äquivalenzpunkt(ÄP)/isoelektrischer Punkt (IEP): Stoff nach außen ungeladen (i.d.R. ungleich mit Neutralitätspunkt pH = 7)

Strukturaufklärung

- \bullet Orientierungsmöglichkeiten einer Polypeptidkette im Raum + sterische Behinderungen bei verschiedenen Anordnungen \Rightarrow Aussage von möglichen Winkeln ϕ,ψ für Sekundärstrukturen
- Ramachandran-Plot: erlaubte und verbotene Zonen von ϕ/ψ -Winkelpaaren
- <u>Hydropathie-Plot</u>: Überführungsenergie für jede Aminosäure einer Peptidkette. Positive Bereiche: Hydrophobe Umgebungen (z.B. α -Helix in Membran)
- Helixbilder: bilden Brückenbindungen (hydrophob, Wasserstoff) welche räumlich gut für Helix-Aufbau sind
- Helixbrecher: sterische Hindernisse, Ladungsabstoßung

Röntgenbeugung

- Elektronen der Atome in Struktur/Kristall zu Schwingungen angeregt, Interferenzerscheinungen = Beugungsmusster entsprechend der Abstände im Kristall
- Bragg-Bedingung $n \cdot \lambda = 2d \cdot \sin(\vartheta)$ n-Beugungsordnung
- Struktur muss starr sein \Rightarrow Proteinkristall
 - Kristallisation: Expression (Proteinbildung in Bakterien), Isolation (reine Proteinfraktion + monodispers), Kristallisation
 - Probleme: geringe Kristall-Ordnung: Gitterfehler, Versetzungen, amorph
 - Lösung: Optimierung thermodynamischer Eigenschaften: Konzentration, Reinheit, pH-Wert, Lösungsmittel, Ionenstärke, Temperatur, Fällungsmittel
- Kristall-Mindestgröße: 0, 2 . . . 0, 4 mm

NMR-Spektroskopie

- NMR: Nuclear-Magnetic-Resonance (kernmagentische Resonanz)
- Wechselweirkung magnetischer Momente mit äußerem Magnetfeld
- Spin der Nukleonen: $\frac{1}{2}$ nur dann wesentliches magnetisches Moment, wenn ungerade Nukleonenzahl
- magnetisches Moment: $\vec{\mu} = \gamma \cdot \vec{J}$ $|\vec{\mu}| = \gamma \cdot \hbar \cdot \sqrt{I \cdot (I+1)}$
- \bullet gyromagnetisches Verhältnis $\gamma,$ Empfindlichkeit des Kerns bei NMR-Spektroskopie
- $\vec{\mu}$ rotiert um Richtung von \vec{B} . Die Rotationsfrequenz heißt <u>Larmorfrequenz</u> ω_0 und entspricht Frequenz der Übergänge zwischen den aufgespalteten Niveaus: $\omega_0 = \gamma \cdot B$
- Kern-Absorption von Wellen der Frequenz ω_0 $\Rightarrow B = 10-20~{\rm T} \Rightarrow {\rm Radiowellen~500-1000~MHz}$
- FT-NMR Spektroskopie (Fouriertransformation)
 - konstantes B-Feld, kurzer breitbandiger Radiopuls, Anregung vieler Kerne, induziert Spannungssignal, mehrmals wiederholen und zeitlich mitteln, Relaxation über die Zeit
 - Auswertung durch Fouriertransformation

Elektronenmikroskopie

- $\bullet\,$ Direktes Abbilden von Strukturen über Mikroskop: benötigt ultrahohe Auflösung (< nm)
- Abbe-Gleichung: $d = \frac{\lambda}{2 \cdot n \sin(\alpha)}$ n-Brechungsindex
- De-Broglie Wellenlänge: $\lambda = \frac{h}{p}$
- Transmissions-Elektronenmikroskop (TEM)
- Raster-Elektronenmiksroskop (SEM, scanning)
- Cryo-Elektronenmikroskoopie: verbesserte Strahlenführung, Tiefkühlfixierung der Probe, 3D-Abrastern

1.5 Membrane

- Lipid-Protein Doppelschicht: 5nm dick
- Schutz, Informations-/ Molekülaustausch (Kanäle, Poren, Proteine)
- Außenseite: Polymerfilm (Glykokalyx)
- hoher Massenanteil am Zellmaterial (>50%)

Lipide

- Amphiphile Substanzen (hydrophil + lipophil)
- $\bullet\,$ Lipidaufbau: hydrophile Kopfgruppe + 2 lipophile Ketten (Schwanz)
- Lipidselbstorganisation:
 - Grenzflächenanordnung: Einfachschicht
 - Micellenbildung: Einfachschicht
 - Stabmicellenbildung: Doppelschicht
 - Liposomen/Lipidvesikel: Doppelschicht, wässriger Innenraum
 - Enstehung der Strukturen: Freiwillige Reaktion: $\Delta G < 0$ $\Delta H > 0$: Energie-/Volumenbilanz ins System $\Delta S > 0$: Höhere Unordnung \Rightarrow Entropiegetrieben Grund: Wassermoleküle an einzelnen gelösten Lipiden wesentlich geordneter (Betrachtung Lipid + Lösungsmittel)
- Kopfgruppe: Cholin, Phosphat, Glycerin mit Estergruppe
- Schwanz: Fettsäuren (Länge: C6 ... C24)
- Gesättigte Fettsäure: keine Doppelbindung, platzsparend
- Ungesättigete Fettsäure, Doppelbindung, platzintensiv (Knick)

Membraneigenschaften

- <u>Leitfähigkeit</u>: unpolare ketten, Hindernis für geladene Teilchen, undurchlässig für Ionen ⇒ kaum Stromfluss, Isolator
- spezifischer Membranwiderstand: $R_m = R \cdot A \approx 10^8 \,\Omega\text{m}^2$
- <u>Kapazität</u>: unpolare Ketten im Inneren, Polare Kopfgruppen Außen ⇒ elektrischer Kondensator
- Plattenkondensator mit Dielektrikum: $C = \varepsilon_0 \cdot \varepsilon_r \cdot \frac{A}{d}$ Dielektrikum: elektrisch schwach oder nichtleitende, nichtmetallische Substanz ohne freie Ladungsträger In der Membran: $\varepsilon_r \approx 3-4$ ähnlich zu Fetten und Ölen
- Spezifische Membrankapazität: $C_M = \frac{C}{A} \approx 1 \frac{\mu F}{\text{cm}^2}$
- Zellmembran besteht aus Lipiden + Membranproteinen
 - Integrale Proteine: transmembran (α-Helix) oder membranständig (nur auf einer Seite der Doppellipidschicht)
 - Periphere Proteine: nur angelagert
 - Kanal-Proteine: Ionenkanäle, Poren, Transporter

Diffusion

- <u>Laterale Diffusion</u> entlang der Membran: Wichtig für Interaktionen, molekulare Stöße
 Einfluss durch Viskosität und Membranheterogenitäten
- Rotationsdiffusion: Zugänglichkeit von bestimmten Molekülgruppen
- \bullet <u>Transversale Diffusion</u>: Austausch zwischen Lipid-Doppelschicht, Flip-Flop (Flippase, Floppase, Scramblase), proteingestützt
- <u>Diffusion über Membran:</u> Signalmoleküle, Ionen, Partikel unterstützt durch Vesikel, Rezeptoren, Ionenkanäle, Poren
- <u>Viskosität</u>: Definiert durch Kraft F, um Gegenstand gegen Reibung zu bewegen: $F = \eta A \frac{\mathrm{d}v(x)}{\mathrm{d}x}$ Einheit: [Pa s] Lipid-Doppelmembran: $\eta \approx 0, 1-1$ Pa s (viskos wie Olivenöl)

- Stokesreibung: $\vec{F} = -f \cdot \vec{v} = -6\pi \eta r \cdot \vec{v}$ Reibungskoeffizient f
- Brown'sche Bewegung: Ungeordnete Wärmebewegung der Teilchen \Rightarrow aufgrund thermisch bedingter Zusammenstöße \Rightarrow Führt zu Zufallsbewegung (Zitterbewegung)

 Mittleres Verschiebungsquadrat: $\overline{\Delta x^2} = \frac{2k_BT}{f} \Delta t$ (eindimensional)
- 1. Fick'sches Gesetz: $J_x = -D \cdot A \frac{\partial c}{\partial x}$ Konzentrations-Fluss J Diffusionskoeffizient $D = \frac{k_B \cdot T}{f} = \frac{\Delta x^2}{2\Delta t}$ $\left[\frac{\text{cm}^2}{\text{s}}\right]$ MSD (mean square displacement): $\Delta x^2 = 2D\Delta t$
- 2. Fick'sches Gesetz: $\left(\frac{\partial c}{\partial t}\right)_x = D\left(\frac{\partial^2 c}{\partial x^2}\right)_t$ (Kontinuitätsgleichung)
 3-dimensional: $\frac{\partial c}{\partial t} + \frac{1}{A}\vec{\nabla}\vec{J} = 0$

gültig für alle Diffusionsprobleme, keine eindeutige Lösung, hängt von Anfangsbedingung ab

Membranheterogenität

- <u>Gel phase, solid state</u>: gestreckte Konformation: gelartige, quasi-kristalline Struktur, kaum Diffusion
- Gel phase → Liquid disordered phase: Aufheizen, Phasenübergang: fluide Phase, schnellere Diffusion
- <u>Gel phase</u> → <u>Liquid ordered phase</u>: Cholesterol: Fluidizer, lagert sich in Membran, schnellere Diffusion
- <u>Liquid disordered</u> → <u>Liquid ordered phase</u>:
 Cholersterol: Verhärter, langsamere Diffusion
 Zugabe ungesättigte Lipide → Liquid ordered Phase
- Sichtbarmachung durch Fluoreszenz: Farbstoffe an Moleküle/Membran: Laseranregung, spezifische Lichtemission, Fluoreszenzemission abhängig von Umgebung: Farbveränderung durch Wassergehalt (größer in liquid phase)
- Heterogene Verteilung der Lipide:
 - Verschiedene Kettenlängen/Phase \Rightarrow unterschiedliche Höhen
 - Hydrophobic match: Moleküle ordnen sich in Bereichen gleicher Höhe an, Köpfe aneinander, hydrophobe Ketten aneinander
 - Proteine heterogen in Zellmembran verteilt sind polar außerhalb der Membran, hydrophob innerhalb, verschiedene Höhen, Lipide entsprechender Höhe lagern sich an
 - Membran-Krümmung, zusätzliche heterogene Verteilung
 - Lipid-Domänen = Lipid-Rafts: höher Gehalt an Sphingolipiden und Cholesterol

Aggregation Lipide gleicher Länge + gleichem hydrophobic match

- Proteinfunktion abhängig von Membranumgebung: Konformationsveränderung, Hydrophobic match, Selektion von zellulären Signalen
- weitere Heterogenität durch Cytoskelett

Cytoskelett

- filamentöses Protein-Netzwerk im Cytoplasma
- dynamisch auf- und abbaubare, fadenförmige Zellstrukturen
- Funktion: Zell-Stabilität, Form, Bewegung, interner Transport
- Mikrotubuli: Netzwerk aus Protein Tubulin Hohlzylinder mit Durchmesser d=25 nm Intrazellulär: Transportvorgänge, Bewegungen/Befestigung von Organellen mit Hilfe von Motorproteinen (Dynein, Kinesin) aktiv an Zellteilung beteiligt
- <u>Intermediär/Zwischenfilamente</u>: Netzwerke mit ähnlichem Aufbau Keratin, Desmin, Neurofilamente, Durchmesser ca. 10 nm Stützgerüst: Zellstabilisierug, Verknüpfungen
- Aktin-Filamente:
 - Fasern aus Protein Aktin, 7 nm Durchmesser, netzartige Anordnungen unterhalb der Plasmamembran, Stabilisierung der äußeren Zellform
 - $-\,$ Zellverspannung, -Bewegung durch relative Verschiebungen $+\,$ Kurzstreckentransport von Vesikeln mit Hilfe des Motorproteins Myosin
 - Zell-Anhaftung: Adhäsion
 - $-\,$ Oranisation/Immobilisierung membranständiger Proteine mit Hilfe von Verknüpfungsproteinen (ERM)
 - Einschränkung der lateralen Diffusion, Kompartmentalisierung der membran

1.6 Nervenzellen - Aktionspotential

Passiver und aktiver Transport

- Transport entlang eines Konzentrationengradienten Δc
- Definition: Fluss $\Phi = P\Delta c$ Permeabilitätskoeffizient P Permeabilität hoch für Wasser (10⁻²cm/min) und lipidlösliche Substanzen, niedrig für Ionen und polare Stoffe (10⁻¹²cm/min)
- positive und negative Flusskopplung möglich
- Nicht semipermeable Membran: Staverman-Gleichungen / Reflexionskoeffizient $0 \le \sigma \le 1$
- Transport durch Poren: durch Proteinkomplexe aufgebauten Öffnungen (z.B. kernporen, Aquaporine)

Ionenkanäle

- transmembrane Transportproteine für Ionen
- Selektivität in der Richtung
- Regulation: Gated, Liganden-, Spannungs, Kraft-, Lichtgesteuert
- Kationen: (K, Na, Ca), Anionen: (Cl, Nitrat, Malat)
- Messung Ionenströme: Black-Lipid Membrane, Patch-Clamp Pipetten
- Transport: Kanal-/Poren-Struktur: Grotthus-Mechanismus

Carrier

- Transmembrane Transportproteine für einzelne Moleküle
- Translokation des Carriers + Bindungspartner
- Freisetzung des Bindungspartners
- Rückführung der unbeladenen Bindungsstelle (Carrier)
- Hohe Spezifizität, niedrige Flussrate (Sättigung)
- negative Flusskopplung (Gegentransport), positive Flusskopplung

Aktiver Transport

- Transport entegegen chemisches Potentials/Konzentrationsgradienten
- benötigt Energie, Ionentransport: Elektrische Signale, führt zu Aktionspotentialen, Gehirnströmen, neuronaler Kommunikation

Signalübertragung in Nervenzellen

- Nervenzellen: Grundbrausteine ZNS + peripheren Nervensystem
 - Zentrales Nervensystem (ZNS): Gehirn, Rückenmark
 - Peripheres Nervensystem: sensorische + motorische Nerven außerhalb des Rückenmarks + Teile des vegetativen (autonomen) Nervensystems
- Neuronen: Aufbau wie normale Zelle
 - Dendriten: Empfang elektrischer Signale und Weiterleitung über Zellkörper und weit verzweigtes Axon
 - Synapsen: Kontaktstellen: Übertragung von Neurotransmittern (von Nervenzelle hergestellt, in Vesikeln gespeichert)
 - Nervenimpuls: Ausschüttung der Neurotransmitter von den Syn-
 - Neurotransmitter gelangen über synaptischen Spalt schnell zur anderen Zelle, werden nach Gebrau enzymatisch abgebaut

Membranpotential

- Kapazität kugelförmiges Lipidvesikel: $C=0,12~\mathrm{pF}$
- Ionentransport: Membran
potentiale $\approx 50-200~\text{mV}$
- Entladung durch Kanal: 1000 Ladungen pro Sekunde, $U=100~\mathrm{mV},$ $R_{\rm Kanal} = 6 \cdot 10^{15} \Omega.$

Exponentieller Abfall Membranspannung: $U(t) = U_0 \exp(-\frac{1}{RC}t)$ Zeitkonstante $\tau=RC\approx75$ s (Membran
potential eine Minute stabil) Durch viele Kanäle in Membran: Zeitkonstante $\tau \sim \text{ms}$

- Ruhepotential einer Zelle: Differenz elektrischer Potentiale zwischen innen und außen: Zellinneres negativ bezüglich Membranaußenseite
- Zellinneres: reich an K⁺-Ionen
- Zelläußeres: reich an Na⁺-Ionen
- Elektrische Feldstärke in Membran: $E = 5 \cdot 10^7 \text{ V/m}$ ⇒ Hohe Spannungsfestigkeit der Membran und Proteine
- Zelle im statischen, elektrischen Feld
 - Polarisationserscheinungen, Influenz an der Membran senkrecht zum äußeren Feld
 - entgegengerichtetes Feld innerhalb der Zelle
 - Äußeres Feld geringen Einfluss auf Proteine in der Zelle

- Zellinstabilität bei hohen Feldstärken (Elektroporation)
 - bei Spannungsspitzen: dielektrischer Durchbruch (Instabilität)
 - \Rightarrow Erhöhung der Membranpermeabilität
 - ⇒ gezielte Einfuhr von DNA, Proteinen, Medikamenten
 - Zell-Regenerierung nach Abschalten der Spannung
- Äußere Wechselspannung $U_{\rm ext} \sim$
 - Kapazitiver Widerstand $R_M = \frac{1}{2\pi \cdot \nu \cdot C_M}$
 - mit zunehmender Frequenz abnehmend
 - Membran als Kurzschluss für extreme Wechselspannungen und hohe Frequenzen \Rightarrow geringer Einfluss von Hochfrequenzstrahlung
- Beeinflussung der Zellwegung durch elektrisches Feld
 - ⇒ mehrere Pole: Zellfalle
 - \Rightarrow wechselnde Pole: Zellrotation

Diffusionspotential

- zwei Kammern mit dissoziiertem Elektrolyt M⁺, X⁻ getrennt durch Diffusionsbarriere
- Konzentrationen c', c''; Potentiale ϕ', ϕ'' ; Koeffizienten D₊, D₋
- Allgemein: N verschiedene Ionensorten: Flussdichte $\Phi_i = \frac{J_i}{\Lambda}$
- $\Phi_i = (\Phi_i)_{\text{diff}} + (\Phi_i)_{\text{elek}} = -D_i \frac{\mathrm{d}c_i}{\mathrm{d}x} c_i D_i \frac{Z_i F}{RT} \frac{\mathrm{d}\phi}{\mathrm{d}x}$ $(\Phi_i)_{\text{elek}} = c_i v_x^i, \quad F_{\text{elek}} = v_x^i \cdot f_i, \quad F_{\text{elek}} = z_i e E$
- Nernst-Planck Gleichung: $\Phi_i = -D_i \cdot \left(\frac{\mathrm{d}c_i}{\mathrm{d}x} + Z_i \cdot c_i \cdot \frac{F}{RT} \frac{\mathrm{d}\phi}{\mathrm{d}x}\right)$
- <u>Diffusionspotential</u>: $V_D = \phi' \phi'' = \frac{D_+ D_-}{D_+ + D_-} \cdot \frac{RT}{F} \ln \left(\frac{c''}{c'} \right)$

Grenzflächenpotential

- Zelloberfläche: viele Ladungen(Lipidkopfgruppen, Proteine)
- Ladungen: NH_3^+ , $COOH^-$, ungleiche Anzahl \Rightarrow elektroische Nettoladung
- Wandladungen sind quasi stationär, in Lösung: dissoziierter Elektrolyt (bewegliche Elektronen)
- Gouy-Chapman-Theorie: $\phi(x) = \phi_0 \exp\left(-\frac{x}{l_D}\right)$ $(\phi_0 \text{ klein})$ Debye-Länge: $l_D = \frac{1}{F} \sqrt{\frac{\varepsilon_0 \varepsilon_r RT}{2 \cdot c}}$ Ionenstärke: $J = \frac{1}{2} \sum_{i=1}^n z_i^2 c_i$

Aktionspotential

- Leitung des Aktionspotential durch das Axon
- Axon = Kabel: gut leitender Kern (Axonplasma) ist passiver elektrischer Leiter/Ionenreservoir + schlecht leitende Membran
- Ruhepotential Tintenfischaxon: $V_m = -60 \text{ mV}$
- $\bullet\,$ Reiz-, Strompuls: Erhöhung des Membran
potentials auf -30 mV
- Spannung entlang des Axons: $V = V_0 \exp\left(-\frac{x}{l}\right)$ $l = \sqrt{\frac{rR_m}{2R_c}}$
- Aktionspotential: Schwellenwertverhalten
 - Depolarisation: Erhöhung Membranpotential Öffnung der Na-Kanäle \Rightarrow Strom in die Zelle
 - Repolarisation: Erniedrigung des Membranpotentials bei ca. $+55~\mathrm{mV}$ Na-Kanäle schließen sich, K-Kanäle öffnen sich \Rightarrow Kalium strömt nach außen
 - Hyperpolarisation: Potental negativer als Ruhepotential
 - Refraktärperiode: Axon für eine Weile unanregbar, Membranpotential auf Ruhepotential stabilisiert
- Gesamtstrom: $I = I_{Na} + I_{K} + I_{L}$ Chlorid Leckstrom: $I_{\rm L}$
- Ionenkanäle: spannungsabhängige Kanäle, Veränderung E-Feld entlang der Membran induziert Konformationsänderung ⇒ Schließen des Kanals durch Verschiebung polarer Gruppen
- ullet bei geschlossenem Kanal: kleiner Torstrom I_{T} messbar
- Ausbreitung entlang des Axons:
 - Start durch Neurotransmitter
 - Depolarisation an einer Stelle
 - Übertragung auf Nachbarstelle
 - Übertragung nur vorwärts aufgrund Refraktionsperiode

1.7 Kinetik

- Kinetik: Lehre von der Dynamik der Lebensprozesse
- Beispiele: Signalübertragung an Synapsen, ATP-Synthase, Raf-Kinasen Signalweg, EGF-Protein Signalweg
- Biochemische Reaktionen = Gleichgewichtsreaktionen: $E \rightleftharpoons P$
- Reaktionsgeschwindigkeiten: zeitliche Änderung der Konzentration $v_1 = \frac{\mathrm{d}[E]}{\mathrm{d}t} = k_1 \cdot [E] \qquad v_{-1} = \frac{\mathrm{d}[P]}{\mathrm{d}t} = k_{-1} \cdot [P]$ Gleichgewicht: $v_1 = v_{-1} = k_1 \cdot [E] = k_{-1} \cdot [P]$ Gleichgewichtskonstante: $K_{\mathrm{eq}} = \frac{k_1}{k_{-1}} = \frac{[P]}{[E]}$

Energetik und Temperaturabhängigkeit

- Energetik chemischer Reaktionen = umgesetzte Energie: exotherm: Energie wird frei endotherm: Energie wird benötigt
- Freie Enthalpie: $K_{\rm eq}=\exp\left(-\frac{\Delta G^0}{RT}\right)\Rightarrow \Delta G^0=-RT\cdot\ln(K_{\rm eq})$
- Stoßtheorie von Arrhenius und van't Hoff
 - Teilchen-Bewegung mit Geschwindigkeitsverteilung ∼ kinetischer Energie
 - Umverteilung der kinetischen Energie durch Stöße
 - Stoß zweier Teilchen mit Aktivierungsenergie fürht zu Reaktion
 - Arrhenius Gleichung: $k = A \cdot \exp\left(-\frac{E_A}{RT}\right)$ A Stoßfrequenz, E_A Aktivierungsenergie
 - Problem: gut für Gase, weniger gut für Lösungen geeignet
- Theorie des Übergangszustandes
 - Beispiel ohne Rückreaktion: A + B \rightarrow P + Q
 - -Energiebarriere \sim Aktivierungsenergie muss überwunden werden
 - Bildung aktivierter Komplex AB* mit Aktivierungsenthalpie ΔH^*
 - Zerfall von AB*: 1.) AB* → P + Q oder 2.) AB* → A + B
 - AB* nicht stabil, aber eigene thermodynamische Eigenschaften, Konzentrationen, Zerfallsraten, bestimmt Gesamtrate der Reaktion
- Experimentelle Funde (ΔT klein): $k \sim \exp(-B \cdot T) \Rightarrow \ln k = -\frac{B}{T} + C$
- Realität: Abweichugen in großen Temperaturbereichen
 - Sprunghaft bei Phasenübergängen, Proteinkonformationsänderun-
 - Sub-Arrhenius (konkav): höhere Rate bei nierdigem T (Tunneleffekte, Kompetitionseffekte)
 - Super-Arrhenius (konvex): höhere Raten bei hohen T
- Temperaturerhöhung von 10°C = Verdopplung der Reaktionsrate $Q_{10} = \frac{V(T+10^\circ)}{V(T)}$ gilt für viele Enzymreaktionen
- Reaktionsparameter:
 - Stöchiometrie: Stoffmengenverhältnisse der Moleküle
 - Molekularität: Zahl der an Reaktion beteiligten Moleküle
 - Reaktionsordnung: Abhängigkeit der Geschwindigkeit von der Konzentration: $v = \frac{d[x]}{dx} = k[X]^n$ n - Reaktionsordnung dt
- <u>Katalysator</u>: zusätzliche Substanz, die Aktivierungsenergie herabsetzt und die Reaktion beschleunigt, wird bei der Reaktion nicht verbraucht
 - Beispiele: reduzierende/oxidierende Metallverbindungen, Enzyme

Enyzme: Biochemische Katalysatoren

- entscheidend in Vielzahl von zellulären Reaktionen: Stoffwechsel, Verdauung, DNA-Replikation
- meist: Substrat (DNA, Protein) bindet an Enzym
- Substrat bindet an das aktive Zentrum ⇒ Bildung Enzym-Substrat-Komplex, Konformationsänderung des Enzyms
- Beispiele: Oxidoreduktasen, Transferasen, Hydrolasen, Synthasen, Isomerasen, Ligasen, Polymerasen
- Enzymreaktion: Substrat \rightleftharpoons Produkt: $E + S \rightleftharpoons ES \rightarrow E + P$
 - totale Enzym-Konzentration: $[E]^t = [E] + [ES]$
 - Annahme: Substratkonzentration \ll Enzymkonzentration: $\frac{\mathrm{d}[ES]}{\mathrm{d}t} \approx 0 \Rightarrow \frac{[E][S]}{[ES]} = \frac{k_{-1} + k_2}{k_1} = K_M \text{ Michaelis-Konstante}$
- Michaelis-Menten Gleichung: $v_P = \frac{\mathrm{d}c_P}{\mathrm{d}t} = \frac{k_2[E]^t[S]}{K_M + [S]}$
- kleine Substrakonzentration: $([S] \ll K_M)$ $v_p = \frac{k_2[E]^t}{K_M}[S]$

- hohe Substratkonzentration: $([S] \gg K_M)$ $v_p = k_2[E]^t = v_{\text{max}}$
- $\bullet \ \mbox{Allgemeine Form:} \ v_p = \frac{v_{\rm max}[S]}{[S] + K_M}, \qquad [S] = K_M \Rightarrow v_p = \frac{v_{\rm max}}{2}$
- Hemmung der Enzymaktivität durch Inhibitoren
 - kompetetive Hemmung: Bindung von Inhibitor an Substratbin-
 - Allosterische Hemmung: Bindung von Inhibitor an andere Stelle des Enzyms (allosterisches Zentrum), Konformationsänderung des
- Erhöhung der Enzymaktivität durch Inhibitoren: Allosterische Förderung
- Regulation von Enzymen:
 - Positive Kooperativität: Bindung eines Substrats ⇒ stärkere Bindung an anderen Stellen ⇒ allosterisches Protein (z.B. Hämoglo-
 - Negative Kooperativität: Bindung eines Substats \Rightarrow niedriger Bindung an anderen Stellen

1.8 Energieformen

- Biologisch verfügbare Energieformen:
 - Spaltungsreaktionen: (ATP/ADP)
 - Redoxreaktionen (A \rightarrow A⁺ + e⁻)
 - Ionengradienten über Membrane
 - Wechselwirkungen zwischen geladenen Gruppen/Dipolen
 - Konformationsänderungen in Proteinen
- Exergonische Reaktion: setzt Energie frei (Zellatmung, Katabolismus)
- Endergonische Reaktion: benötigt Energie (Zellbewgung, -transport)

ATP Reaktion

- Wichtigste Spaltungsreaktion: ruhender Mensch: ATP-Umsatz pro Tag $\sim 50\%$ der Körpermasse
- ATP: Adenosintriphosphat: Aminosäure Adenin + Ribose + drei Phosphatgruppen $(\alpha, \beta, \gamma$ -Phosphat)
- Hydrolyse von ATP: Abspaltung der γ -Phosphatgruppe \rightarrow anorganisches Phosphat + ADPWeitere Phosphatabspaltung: P + AMP (Adenosinmonophosphat)
 - gleichzeitiges Abspalten: Pyrophosphat (PP) + AMP
- $ATP + H_2O \rightarrow ADP + P$ $\Delta G = -30,96 \text{kJ/mol}$
- sehr starke Spontanität (Energiefreisetzung + Entropiezunahme)
- Ursache: Hydratationsenergie durch Anlagerung von Wassermolekülen an Ionen
- freie Enthalpie stark von Umgebung abhängig:
 - wässrige Lösung: $\Delta G < 0$ Hydrolyse freiwillig
 - wasserarme Lösung: $\Delta G > 0$ Synthese freiwillig
- Biologische Maschine zur ATP-Synthese: ATP-Synthase
 - 1. Open site: ADP + P bindet mit Hydrathülle an Bindungsstelle
 - Occlude site: Schließung der Bindungsstelle + Abtransport der Hydrathülle \rightarrow wasserfreie Umgebung \rightarrow spontane Synthese von ATP
 - 3. reopended site: Wiederöffnung der Bindungsstelle + Freisetzung von AtP

Zellatmung und ATP Speicherung

- Glykolyse: Herstellung von Pyruvat (Brenztraubensäure) aus Glucose
- Oxidative Decarboxylierung + Citratzyklus: metabolischer Prozess zur Generierung von Energie für ATP-Synthese
- Atmungskette: Endoxidation, ATP-Synthese
- ATP Speicherung in Vesikeln
 - Umgebung in der ATP stabil ist
 - Transport von ATP innerhalb der Zelle
 - Beispiel: Neurotransmitter-Vesikel \rightarrow ATP als Signalüberträger zwischen Nervenzellen
 - Vesikeltransport: Motorproteine entlang des Cytoskeletts

Vesikeltransport entlang Mikrotubuli

- Kinesin und Dynein: ⇒ Cargo-Dämone: Bindung von Organellen/Vesikeln ⇒ Linker (neck linker, flexibel)
 - \Rightarrow Motor Domäne (zwei Füße mit Bindungsstellen für ATP und Mikrotubuli)
- Bindung von ATP an Fuß der Motor-Domäne
- ATP-Hydrolyse: Konformationsänderung (Linkerbewegung)
- ADP + P Freisetzung am ersten Fuß, ATP-Bindung am anderen Fuß
- Schrittweite: 8nm, ein ATP pro Schritt
- Kinesin: 640 nm/s, Dynein: entgegengesetzte Richtung

ATP Verbrauch + Muskelkontraktion

- Motorprotein (Myosin) entlang Aktin-Zytoskelett: Muskelkontraktion
- Myosin: Cargo-Domänge, Linker, Motor
- Troponin: Komplex aus 3 regulierenden Proteinen (Troponin C, I, T), Anlagerung an Aktin-Rinne
- Tropomyosin: stabähnliches coiled-coil Proteinmultimer
- Relaxierter Zustand: Myosin Bindungsstelle geblockt, Stimulierung der Myosinkontraktion durch Calcium-Signal
 - \Rightarrow Ca²⁺ Bindung an Troponin \Rightarrow Konformationsänderung
 - \Rightarrow aktive Bindungsstelle für Myosin
- Myosinbewegung:
 - Bindung von Myosin an Aktin
 - ATP-Bindung an einem Fuß ⇒ Loslösung des Fußes
 - ⇒ ATP-Hydrolyse ⇒ Konformationsänderung des Myosins
 - \Rightarrow Fußbewegung \Rightarrow Bindung des Fußes
- Muskelzellen: Myosin und Aktinfilamente Myofibrillen durch Sarkomere unterteilt
- Muskelkontraktion: Verschiebung Aktin relativ zu Myosinfilamenten
 Zusammenschieben der Sarkomere

Phosphorylierung + Ubiquitinierung

- <u>Phosphorylierung</u>: reversibles Anbinden Phophorylgruppe an Protein ⇒ Regulierungsfunktion: Protein-Konformationsänderung, funktionelle andere Form des Proteins, Aktivierung/Deaktivierung von Bindungsstellen
 - ⇒ Enzymgetrieben: Kinase
- <u>Dephosphorylierung</u>: Abspaltung von Phophorylgruppe
 - \Rightarrow Enstehung freier Phosphorylgruppe + dephosphoryliertes Protein
 - \Rightarrow konkurrierende Prozesse
 - \Rightarrow Enzymgetrieben: Phosphatasen
- <u>Ubiquitinierung</u>: Anheftung von Ubiquitin-Gruppe an Protein
 ⇒ Regulierung von Proteinen

1.9 DNA

- DNA = Desoxiribonucleic acid
- Aufbau: Aneinanderkettung von 4 Basen: Adenin, Guanin, Thymin, Cytosin
- \bullet Nucleoside: Base + Ribose/Zucker (Adenosin, Guanosin)
- Nucleotide: Nucleoside + Phosphatgruppen
- DNA-Doppelstrang:
 - zwei komplementäre Einzelstränge
 - nur passende Basen komplementär: C-G, A-T
 - Stabilisierung über Wasserstoffbrückenbindungen
 - Ausbildung einer Doppelhelix (3,2 Mio Basenpaare)
 - Wicklung der DNA um Histone (Nukleosome, 10 nm dick)
 - Anordnung, Verdichtung zu Chromosomen bei der Zellteilung

DNA-Replikation

- 1. Entwindung der Helix durch Topoisomerase
 - DNA kommt als Super-Coil vor ⇒ Entwindung nötig
 - Topoisomerase windet um DNA mit aktiver Gruppe
- 2. Aufspaltung in Einzelstränge durch Helikase
 - $\bullet\,$ Lösen der Basenpaare (Wasserstoffbrücken) durch ATP-Hydrolyse
 - Auseinanderschieben der Einzelstränge (passiv)
 - Helikase kriecht über die DNA, zwei Helikase-Module heften sicht an den Doppelstrang und schieben sich abwechselnd um eine Base vorwärts
- 3. Aufbau komlementärer Stränge durch DNA-Polymerase
 - schiebt sich entlang des DNA-Einzelstrangs
 - Zufluss der Nukleotide + Aneinanderreihung zum DNA-Einzelstrang
- 4. Helix Bildung: spontan, da Helixform thermodynamisch günstig

Proteinsynthese

- RNA = ribonucleic acid
- Aufbau: 4 Basen: Adenin, Guanin, Urcail, Cytosin
- Transkription auf RNA
 - Übertragung der Gensequenz von DNA auf RNA-Einzelstrang
 - Entwindung der DNA-Helix durch Topoisomerase
 - Übertragung auf RNA mit RNA Polymerase
 - Aufbau des komplementären RNA-Einzelstrangs
 - Wiederherstellung des ursprünglichen DNA-Doppelstrangs

Translation

- Übersetzung der RNA-Sequenz in Aminosäuresequenz
- RNA Strang gelangt ins Cytosol ⇒ mRNA
- Übersetzugn der mRNA Basensequenz mit Hilfe der Ribosomen am rauen ER
- Ribosom wandert entlang mRNA
- transfer-RNA (tRNA) mit komplementären Codon bindet an RNA
- tRNA trägt entsprechende Aminosäure
- Aminosäure wird an Peptid-Kette gebunden
- Protein wird zusammengefügt und gefaltet